On maximum-principle-satisfying high order schemes for scalar conservation laws

نویسندگان

  • Xiangxiong Zhang
  • Chi-Wang Shu
چکیده

We construct uniformly high order accurate schemes satisfying a strict maximum principle for scalar conservation laws. A general framework (for arbitrary order of accuracy) is established to construct a limiter for finite volume schemes (e.g. essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes) or discontinuous Galerkin (DG) method with first order Euler forward time discretization solving one dimensional scalar conservation laws. Strong stability preserving (SSP) high order time discretizations will keep the maximum principle. It is straightforward to extend the method to two and higher dimensions on rectangular meshes. We also show that the same limiter can preserve the maximum principle for DG or finite volume schemes solving two-dimensional incompressible Euler equations in the vorticity stream-function formulation, or any passive convection equation with an incompressible velocity field. Numerical tests for both the WENO finite volume scheme and the DG method are reported. AMS subject classification: 65M06, 65M60, 65M12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes

Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Maximum-principle-satisfying high order finite volume WENO schemes for convection-diffusion equations

To easily generalize the maximum-principle-satisfying schemes for scalar conservation laws in [14] to convection diffusion equations, we propose a non-conventional high order finite volume weighted essentially non-oscillatory (WENO) scheme which can be proven maximum-principle-satisfying. Two-dimensional extensions are straightforward. We also show that the same idea can be used to construct hi...

متن کامل

Maximum-principle-satisfying High Order Finite Volume Weighted Essentially Nonoscillatory Schemes for Convection-diffusion Equations

To easily generalize the maximum-principle-satisfying schemes for scalar conservation laws in [X. Zhang and C.-W. Shu, J. Comput. Phys., 229 (2010), pp. 3091–3120] to convection diffusion equations, we propose a nonconventional high order finite volume weighted essentially nonoscillatory (WENO) scheme which can be proved maximum-principle-satisfying. Two-dimensional extensions are straightforwa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 229  شماره 

صفحات  -

تاریخ انتشار 2010